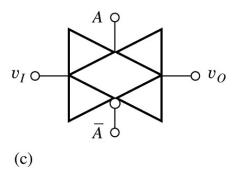

Announcements

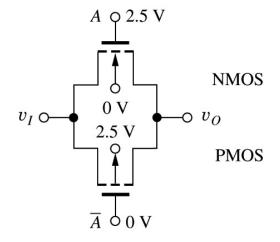

- Homework #8 due Friday in class.
- Office hours today 2-3 pm and Th 12-1 pm
- Exam 2 regrade requests by in-class Friday.
- Grades online at catalyst.uw.edu/gradebook/dunham/86375

EE 331 Spr 2014

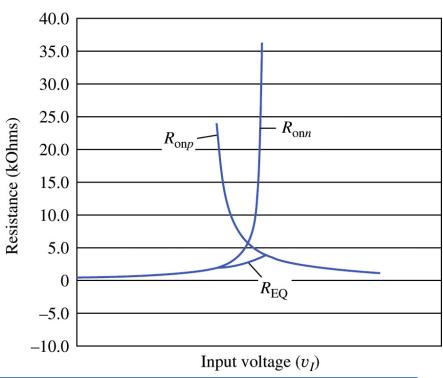
The CMOS Transmission Gate

Bilateral Switch

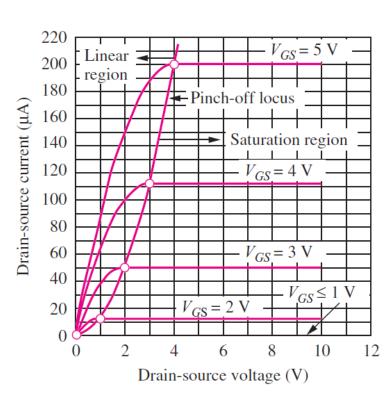
- The CMOS transmission gate (T-gate) is a useful circuit for both analog and digital applications
- It acts as a switch that can operate up to V_{DD} and down to V_{SS} .
- Either side can be input/output.


The CMOS Transmission Gate

Equivalent On-Resistance


 Primary consideration is equivalent on-resistance which is given by the following expression:

$$R_{EQ} = \frac{R_{onp}R_{onn}}{R_{onp} + R_{onn}}$$

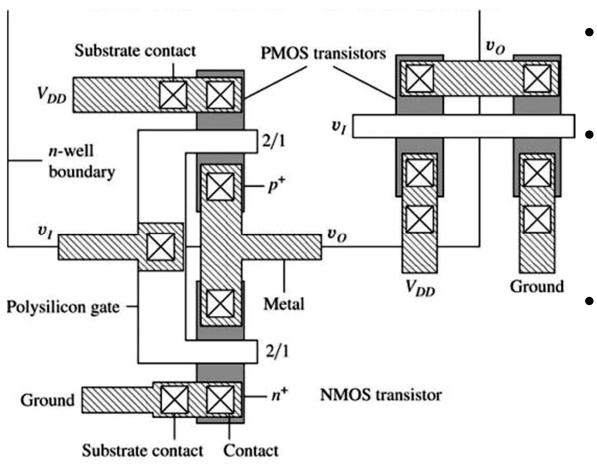

- NMOS conducts for $v_i < V_{DD} V_{TN}$
- PMOS conducts for $v_l > -V_{TP}$

Transmission Gate Resistance

NMOS Output Characteristics with Linearized Distributed Body Effect

Region	Current Equation	Condition
Cutoff	$i_D = 0$	$v_{GS} \leq V_{TN}$
Triode	$i_D = K_n \left(v_{GS} - V_{TN} - [1 + \alpha] \frac{v_{DS}}{2} \right) v_{DS}$	$\begin{aligned} v_{GS} > V_{TN} \\ v_{GS} - V_{TN} > \\ [1 + \alpha] v_{DS} \end{aligned}$
Satur- ation	$i_D = \frac{K_n}{2[1+\alpha]} (v_{GS} - V_{TN})^2$	$\begin{aligned} v_{GS} &> V_{TN} \\ v_{GS} - V_{TN} &\leq \\ [1 + \alpha] v_{DS} \end{aligned}$

Transconductance (Saturation)

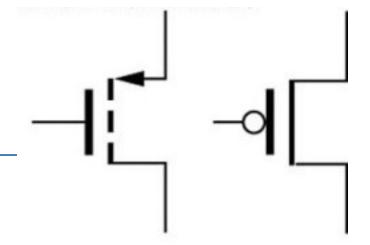

$$i_D = \frac{K'_n}{2(1+\alpha)} \frac{W}{L} (v_{GS} - V_{TN})^2$$
 $v_{DSAT} = (v_{GS} - V_{TN})/[1+\alpha]$

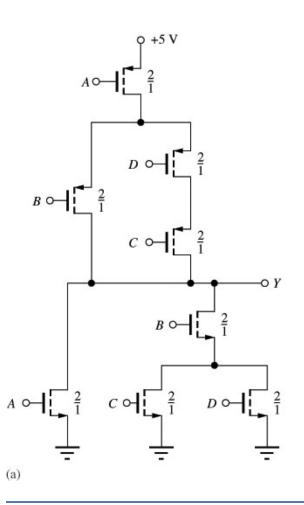
• Transconductance (change in i_D vs. change in v_{GS}):

$$g_m = \frac{di_D}{dv_{GS}} = K'_n \frac{W}{L(1+\alpha)} (v_{GS} - V_{TN})$$

CMOS Technology

Inverter Layout


- Two methods of laying out a CMOS inverter are shown
- The PMOS transistors lie within the n-well, whereas the NMOS transistors lie in the p-substrate
- Polysilicon is used to form common gate connections, and metal is used to tie the two drains together


Minimum Size Gate

Design and Performance

- With CMOS technology, there is an area/delay tradeoff that needs to be considered
- If minimum feature sized are used for both devices, then the τ_{PLH} will be increased compared to the symmetrical reference inverter

Complex Gate Design

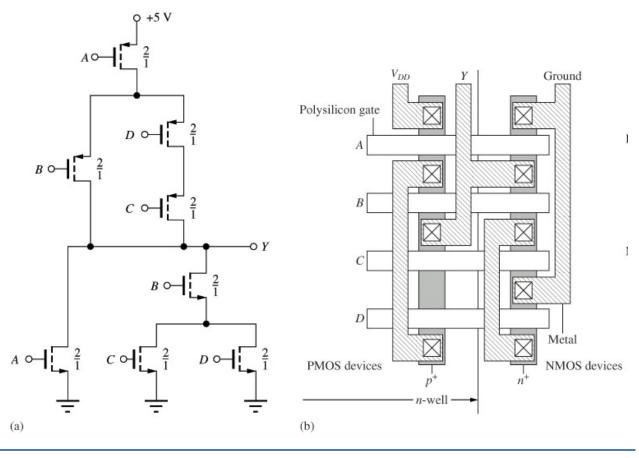
NMOS pull-down:

$$Y = \overline{A + B \cdot (C + D)}$$

$$= \overline{A} \cdot \left[\overline{B} \cdot (C + D) \right]$$

$$= \overline{A} \cdot \left[\overline{B} + \overline{(C + D)} \right]$$

$$= \overline{A} \cdot \left[\overline{B} + \overline{C} \cdot \overline{D} \right]$$


which is PMOS pull-up circuit.

Minimum Size Complex Gate

Design and Layout

The following shows the layout of a complex minimum size

logic gate

